Smooth-Threshold Multivariate Genetic Prediction with Unbiased Model Selection.
نویسندگان
چکیده
We develop a new genetic prediction method, smooth-threshold multivariate genetic prediction, using single nucleotide polymorphisms (SNPs) data in genome-wide association studies (GWASs). Our method consists of two stages. At the first stage, unlike the usual discontinuous SNP screening as used in the gene score method, our method continuously screens SNPs based on the output from standard univariate analysis for marginal association of each SNP. At the second stage, the predictive model is built by a generalized ridge regression simultaneously using the screened SNPs with SNP weight determined by the strength of marginal association. Continuous SNP screening by the smooth thresholding not only makes prediction stable but also leads to a closed form expression of generalized degrees of freedom (GDF). The GDF leads to the Stein's unbiased risk estimation (SURE), which enables data-dependent choice of optimal SNP screening cutoff without using cross-validation. Our method is very rapid because computationally expensive genome-wide scan is required only once in contrast to the penalized regression methods including lasso and elastic net. Simulation studies that mimic real GWAS data with quantitative and binary traits demonstrate that the proposed method outperforms the gene score method and genomic best linear unbiased prediction (GBLUP), and also shows comparable or sometimes improved performance with the lasso and elastic net being known to have good predictive ability but with heavy computational cost. Application to whole-genome sequencing (WGS) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) exhibits that the proposed method shows higher predictive power than the gene score and GBLUP methods.
منابع مشابه
Comparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province
In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...
متن کاملComparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province
In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...
متن کاملComparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetic epidemiology
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2016